Effects of Pathogenic Variations in the Human Rhodopsin Gene (hRHO) on the Predicted Accessibility for a Lead Candidate Ribozyme
نویسندگان
چکیده
Purpose The mutation-independent strategy for hammerhead ribozyme (hhRz) or RNA interference (RNAi)-based gene therapeutics to treat autosomal dominant diseases is predicated on the hypothesis that a single therapeutic would equivalently suppress all/most of the diverse mutant mRNAs in patients with the disease phenotype. However, the hypothesis has not been formally tested. We address this through a comprehensive bioinformatics study of how mutations affect target mRNA structure accessibility for a single lead hhRz therapeutic (725GUC↓), designed against human rod rhodopsin mRNA (hRHO), for patients with hRHO mutations that cause autosomal dominant retinitis pigmentosa. Methods A total of 199 in silico coding region mutations (missense, nonsense, insert, deletion, indel) were made in hRHO mRNA based on Human Gene Mutation Database and Database of Single Nucleotide Polymorphisms. Each mRNA was folded with MFold, SFold, and OligoWalk algorithms and subjected to a bioinformatics model called multiparameter prediction of RNA accessibility. Predicted accessibility of each mutant over both a broad local region and the explicit lead ribozyme annealing site were compared quantitatively to wild-type hRHO mRNA. Results Accessibility of the 725GUC↓ site is sensitive to some mutations. For single nucleotide missense mutations, proximity of the mutation to the hhRz annealing site increases the impact on predicted accessibility, but some distant mutations also influence accessibility. Conclusions A mutation-independent strategy appears viable in this specific context but certain mutations could significantly influence ribozyme or RNAi efficacy through impact on accessibility at the target annealing site/region. This possibility must be considered in applications of this gene therapy strategy.
منابع مشابه
A comprehensive in silico analysis of pathogenic nsSNPs in the NT5C2 gene involved in relapsed ALL
Background: About 10-20% of children suffering from acute lymphoblastic leukemia (ALL), experience a relapse, which is a major cause of their death. Purine nucleotide analogs are frequently prescribed to maintain the treatment of ALL. Cytosolic 5´-nucleotidase (NT5C2) catalyzes the 5´ dephosphorylation of purine analogs. Gain-of-function mutations in the NT5C2 gene result in resistance to the t...
متن کاملMicroduplication of Xp22.31 and MECP2 Pathogenic Variant in a Girl with Rett Syndrome: A Case Report
Rett syndrome (RS) is a neurodevelopmental infantile disease characterized by an early normal psychomotor development followed by a regression in the acquisition of normal developmental stages. In the majority of cases, it leads to a sporadic mutation in the MECP2 gene, which is located on the X chromosome. However, this syndrome has also been associated with microdeletions, gene translocations...
متن کاملZinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa
Despite the recent success of gene-based complementation approaches for genetic recessive traits, the development of therapeutic strategies for gain-of-function mutations poses great challenges. General therapeutic principles to correct these genetic defects mostly rely on post-transcriptional gene regulation (RNA silencing). Engineered zinc-finger (ZF) protein-based repression of transcription...
متن کاملPrioritization of Deleterious Variations in the Human Hypoxanthine-Guanine Phosphoribosyltransferase Gene
ABSTRACT Background and Objectives: Non-synonymous single nucleotide polymorphisms are typical genetic variations that may potentially affect the structure or function of expressed proteins, and therefore could be involved in complex disorders. A computational-based analysis has been done to evaluate the phenotypic effect of no...
متن کاملAssociation of Pathogenic Missense and Nonsense Mutations in Mitochondrial COII Gene with Familial Adenomatous Polyposis (FAP)
Nuclear genetic mutations have been extensively investigated in solid tumors. However, the role of the mitochondrial genome remains uncertain. Since the metabolism of solid tumors is associated with aerobic glycolysis and high lactate production, tumors may have mitochondrial dysfunctions. Familial adenomatous polyposis (FAP) is a rare form of colorectal cancer and an autosomal dominant inheri...
متن کامل